Estadística

Estadística
Por: Francisco Alonso Alavez Sosa Grupo: 506

jueves, 12 de marzo de 2015

Teorema de Bayes

El teorema de Bayes parte de una situación en la que es posible conocer las probabilidades de que ocurran una serie de sucesos Ai.
A esta se añade un suceso B cuya ocurrencia proporciona cierta información, porque las probabilidades de ocurrencia de B son distintas según el suceso Ai que haya ocurrido.
Conociendo que ha ocurrido el suceso B, la fórmula del teorema de Bayes nos indica como modifica esta información las probabilidades de los sucesos Ai.
Ejemplo: Si seleccionamos una persona al azar, la probabilidad de que sea diabética es 0,03. Obviamente la probabilidad de que no lo sea es 0,97.
Si no disponemos de información adicional nada más podemos decir, pero supongamos que al realizar un análisis de sangre los niveles de glucosa son superiores a 1.000 mg/l, lo que ocurre en el 95% de los diabéticos y sólo en un 2% de las personas sanas.
¿Cuál será ahora la probabilidad de que esa persona sea diabética?
La respuesta que nos dá el teorema de bayes es que esa información adicional hace que la probabilidad sea ahora 0,595.
Vemos así que la información proporcionada por el análisis de sangre hace pasar, la probabilidad inicial de padecer diabetes de 0,03, a 0,595.
Evidentemente si la prueba del análisis de sangre hubiese sido negativa, esta información modificaría las probabilidades en sentido contrario. En este caso la probabilidad de padecer diabetes se reduciría a 0,0016.

Regla de Multiplicación

De la definición de probabilidad condicional se tienen los siguientes resultados al despejar $P(A\cap B):$


Las relaciones $\left( 1\right) $ y $\left( 2\right) $ son casos especiales de la llamada Regla de la multiplicación, la cual es útil para:
Calcular probabilidades de intersecciones de eventos MATHcon base en probabilidades condicionales.
Esta regla de manera general se puede expresar como:
Sea MATH eventos tales que MATH. Entonces
MATH
Ejemplo
1(Inspección de Lotes)
Un lote contiene $100$ items de los cuales $20$ son defectuosos. Los items son seleccionados uno despues del otro para ver si ellos son defectuosos. Suponga que dos items son seleccionados sin reemplazamiento(Significa que el objeto que se selecciona al azar se deja por fuera del lote). ¿ Cúal es la probabilidad de que los dos items seleccionados sean defectuosos?.
Solución
Sea los eventos
MATH
entonces dos items seleccionados seran defectuosos, cuando ocurre el evento $A_{1}\cap A_{2}$ que es la intersección entre los eventos $A_{1}$ y $A_{2}$. De la información dada se tiene que:
MATH MATH
así probabilidad de que los dos items seleccionados sean defectuosos es
MATH
Ahora suponga que selecciona un tercer item, entonces la probabilidad de que los tres items seleccionados sean defectuosos es
MATH

Regla general de la adición de probabilidades para eventos no mutuamente excluyentes

Si A y B son dos eventos no mutuamente excluyentes (eventos intersecantes), es decir, de modo que ocurra A o bien B o ambos a la vez (al mismo tiempo), entonces se aplica la siguiente regla para calcular dicha probabilidad:
Monografias.com
El espacio muestral (S) corresponde al conjunto universo en la teoría de conjuntos
Ejemplos ilustrativos
1) Sea A el suceso de sacar un As de una baraja estándar de 52 cartas y B sacar una carta con corazón rojo. Calcular la probabilidad de sacar un As o un corazón rojo o ambos en una sola extracción.
Solución:
A y B son sucesos no mutuamente excluyentes porque puede sacarse el as de corazón rojo.
Las probabilidades son:
Monografias.com
Reemplazando los anteriores valores en la regla general de la adición de probabilidades para eventos no mutuamente excluyentes se obtiene:
Monografias.com


lunes, 9 de febrero de 2015

Permutaciones y Combinaciones

Teoría de Conjuntos

La palabra conjunto generalmente la asociamos con la idea de agrupar objetos, por ejemplo un conjunto de discos, de libros, de plantas de cultivo y en otras ocasiones en palabras como hato, rebaño, piara, parcelas, campesinado, familia, etc., es decir la palabra conjunto denota una colección de elementos claramente entre sí, que guardan alguna característica en común. Ya sean números, personas, figuras, ideas y conceptos.
En matemáticas el concepto de conjunto es considerado primitivo y ni se da una definición de este, sino que se trabaja con la notación de colección y agrupamiento de objetos, lo mismo puede decirse que se consideren primitivas las ideas de elemento y pertenencia.
La característica esencial de un conjunto es la de estar bien definido, es decir que dado un objeto particular, determinar si este pertenece o no al conjunto. Por ejemplo si se considera el conjunto de los números dígitos, sabemos que el 3 pertenece al conjunto, pero el 19 no. Por otro lado el conjunto de las bellas obras musicales no es un conjunto bien definido, puesto que diferentes personas puedan incluir distintas obras en el conjunto.
Los objetos que forman un conjunto son llamados miembros o elementos. Por ejemplo el conjunto de las letras de alfabeto; a, b, c, ..., x, y, z. que se puede escribir así:

{ a, b, c, ..., x, y, z}

Como se muestra el conjunto se escribe entre llaves ({}) , o separados por comas (,).

El detallar a todos los elementos de un conjunto entre las llaves, se denomina forma tabular, extensión o enumeración de los elementos.

OPERACIONES CON CONJUNTOS


UNION
La unión de dos conjuntos A y B la denotaremos por A È B y es el conjunto formado por los elementos que pertenecen al menos a uno de ellos ó a los dos. Lo que se denota por:
È B = { x/x Î A ó x Î B }

Ejemplo: Sean los conjuntos A={ 1, 3, 5, 7, 9 } y B={ 10, 11, 12 }
È B ={ 1, 3, 5, 7, 9, 10, 11, 12 }



INTERSECCION
Sean A={ 1, 2, 3, 4, 5, 6, 8, 9 } y B={ 2, 4, 8, 12 }
Los elementos comunes a los dos conjuntos son: { 2, 4, 8 }. A este conjunto se le llama intersección de A y B; y se denota por A Ç B, algebraicamente se escribe así:
A Ç B = { x/x Î A y x Î B }
Y se lee el conjunto de elementos x que están en A y están en B.

Ejemplo:
Sean Q={ a, n, p, y, q, s, r, o, b, k } y P={ l, u, a, o, s, r, b, v, y, z }
Ç P={ a, b, o, r, s, y }




CONJUNTO VACIO
Un conjunto que no tiene elementos es llamado conjunto vacío ó conjunto nulo lo que denotamos por el símbolo Æ .

Por ejemplo:
Sean A={ 2, 4, 6 } y B={ 1, 3, 5, 7 } encontrar A Ç B.
Ç B= { }
El resultado de A Ç B= { } muestra que no hay elementos entre las llaves, si este es el caso se le llamará conjunto vacío ó nulo y se puede representar como:
Ç B=Æ



CONJUNTOS AJENOS
Sí la intersección de dos conjuntos es igual al conjunto vacío, entonces a estos conjuntos les llamaremos conjuntos ajenos, es decir:
Si A Ç B = Æ entonces A y B son ajenos.




COMPLEMENTO
El complemento de un conjunto respecto al universo U es el conjunto de elementos de U que no pertenecen a A y se denota como A' y que se representa por comprehensión como:
A'={ x Î U/x y x Ï A }

Ejemplo:
Sea U = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }
A= { 1, 3, 5, 7, 9 } donde A Ì U
El complemento de A estará dado por:
A'= { 2, 4, 6, 8 }




DIFERENCIA
Sean A y B dos conjuntos. La diferencia de A y B se denota por A-B y es el conjunto de los elementos de A que no están en B y se representa por comprehensión como:
A - B={ x/x Î A ; X Ï B }

Ejemplo:
Sea A= { a, b, c, d } y
B= { a, b, c, g, h, i }
A - B= { d }
En el ejemplo anterior se observa que solo interesan los elementos del conjunto A que no estén en B. Si la operación fuera B - A el resultado es
B – A = { g, h, i }
E indica los elementos que están en B y no en A.

DIAGRAMAS DE VENN
Los diagramas de Venn que de deben al filósofo inglés John Venn (1834-1883) sirven para encontrar relaciones entre conjuntos de manera gráfica mediante dibujos ó diagramas.
La manera de representar el conjunto Universal es un rectángulo, ó bien la hoja de papel con que se trabaje.
Un ejemplo de la representación del conjunto universal se muestra como:


Los conjuntos se representan por medio de dibujos dentro del rectángulo, los aspectos de interés se resaltan sombreando las áreas respectivas. En el caso de este curso las indicaremos por medio de un color azul por ejemplo: