Estadística

Estadística
Por: Francisco Alonso Alavez Sosa Grupo: 506

jueves, 12 de marzo de 2015

Teorema de Bayes

El teorema de Bayes parte de una situación en la que es posible conocer las probabilidades de que ocurran una serie de sucesos Ai.
A esta se añade un suceso B cuya ocurrencia proporciona cierta información, porque las probabilidades de ocurrencia de B son distintas según el suceso Ai que haya ocurrido.
Conociendo que ha ocurrido el suceso B, la fórmula del teorema de Bayes nos indica como modifica esta información las probabilidades de los sucesos Ai.
Ejemplo: Si seleccionamos una persona al azar, la probabilidad de que sea diabética es 0,03. Obviamente la probabilidad de que no lo sea es 0,97.
Si no disponemos de información adicional nada más podemos decir, pero supongamos que al realizar un análisis de sangre los niveles de glucosa son superiores a 1.000 mg/l, lo que ocurre en el 95% de los diabéticos y sólo en un 2% de las personas sanas.
¿Cuál será ahora la probabilidad de que esa persona sea diabética?
La respuesta que nos dá el teorema de bayes es que esa información adicional hace que la probabilidad sea ahora 0,595.
Vemos así que la información proporcionada por el análisis de sangre hace pasar, la probabilidad inicial de padecer diabetes de 0,03, a 0,595.
Evidentemente si la prueba del análisis de sangre hubiese sido negativa, esta información modificaría las probabilidades en sentido contrario. En este caso la probabilidad de padecer diabetes se reduciría a 0,0016.

Regla de Multiplicación

De la definición de probabilidad condicional se tienen los siguientes resultados al despejar $P(A\cap B):$


Las relaciones $\left( 1\right) $ y $\left( 2\right) $ son casos especiales de la llamada Regla de la multiplicación, la cual es útil para:
Calcular probabilidades de intersecciones de eventos MATHcon base en probabilidades condicionales.
Esta regla de manera general se puede expresar como:
Sea MATH eventos tales que MATH. Entonces
MATH
Ejemplo
1(Inspección de Lotes)
Un lote contiene $100$ items de los cuales $20$ son defectuosos. Los items son seleccionados uno despues del otro para ver si ellos son defectuosos. Suponga que dos items son seleccionados sin reemplazamiento(Significa que el objeto que se selecciona al azar se deja por fuera del lote). ¿ Cúal es la probabilidad de que los dos items seleccionados sean defectuosos?.
Solución
Sea los eventos
MATH
entonces dos items seleccionados seran defectuosos, cuando ocurre el evento $A_{1}\cap A_{2}$ que es la intersección entre los eventos $A_{1}$ y $A_{2}$. De la información dada se tiene que:
MATH MATH
así probabilidad de que los dos items seleccionados sean defectuosos es
MATH
Ahora suponga que selecciona un tercer item, entonces la probabilidad de que los tres items seleccionados sean defectuosos es
MATH

Regla general de la adición de probabilidades para eventos no mutuamente excluyentes

Si A y B son dos eventos no mutuamente excluyentes (eventos intersecantes), es decir, de modo que ocurra A o bien B o ambos a la vez (al mismo tiempo), entonces se aplica la siguiente regla para calcular dicha probabilidad:
Monografias.com
El espacio muestral (S) corresponde al conjunto universo en la teoría de conjuntos
Ejemplos ilustrativos
1) Sea A el suceso de sacar un As de una baraja estándar de 52 cartas y B sacar una carta con corazón rojo. Calcular la probabilidad de sacar un As o un corazón rojo o ambos en una sola extracción.
Solución:
A y B son sucesos no mutuamente excluyentes porque puede sacarse el as de corazón rojo.
Las probabilidades son:
Monografias.com
Reemplazando los anteriores valores en la regla general de la adición de probabilidades para eventos no mutuamente excluyentes se obtiene:
Monografias.com